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Several models are developed for the high-wavenumber portion of the spectral transfer 
function of scalar quantities advected by high-Reynolds-number, locally isotropic 
turbulent flow. These models are applicable for arbitrary Prandtl or Schmidt number, 
v / D ,  and t,he resultant scalar spectra are compared with several experiments having 
different u / D .  The ‘bump’ in the temperature spectrum of air observed over land is 
shown to be due to a tendency toward a viscous-convective range and the presence of 
this bump is consistent with experiments for large v/D. The wavenumbers defining 
the transition between the inertial-convective range and viscous-convective range for 
asymptotically large u/D (denoted k* and k: for the three- andone-dimensional spectra) 
are determined by comparison of the models with experiments. A measurement of the 
transitional wavenumber kT [denoted (kT)mesa] is found to depend on v / D  and on any 
filter cut-off. On the basis of the k* values it is shown that measurements of PI from 
temperature spectra in moderate Reynolds number turbulence in air ( v / D  = 0-72) 
maybe over-estimates and that the inertial-diffusive range of temperature fluctuations 
in mercury (u /D N 0.02) is of very limited extent. 

1. Introduction 
Knowledge of the spatial power spectra of temperature and humidity fluctuations 

in turbulent flow is needed in treating the propagation and scattering of sound, optical, 
and radio frequency waves. The importance of such scalar fluctuations lies in their 
influence on the refractive index fluctuations in turbulent media. Four models of the 
scalar spectrum are developed for arbitrary Prandtl or Schmidt numbers; these models 
are applicable to high Reynolds number flows. The models give a unified treatment of 
scalar spectra for arbitrary Prandtl or Schmidt numbers; therefore, fitting the models 
to existing data allows one to  predict the shape of scalar spectra that have not been 
measured, an example being the humidity spectrum at wavenumbers higher 
than can be observed by present techniques. The models are presented in $ 4  after 
reviewing the observational data and previous models of the scalar spectrum. 

The three-dimensional scalar spectrum r(k, t )  and its one-dimensional counterpart 
Y(k1, t )  are herein normalized so that they are the spectral budgets of the mean- 
squared scalar fluctuation: 

(nz) = IOm r(k, t )  dk = jOm ~ ( k , ,  t )  dk,, 
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where n is the fluctuation in the concentration or temperature. Assuming isotropy, 
the diffusive dissipation rate x of the mean-squared fluctuations is then given by 

x = 2 D J O m k 2 r ( k , t ) d k  = 6 D J r k : Y ( k 1 , t ) d k 1 ,  

where D is the diffusivity. The relationship between r ( k ,  t )  and Y ( k l ,  t )  is given by 

There are several possible wavenumber ranges for the scalar spectrum depending 
on the ratio v / D  ( v  being the kinematic viscosity) which is the Prandtl number Pr for 
temperature, or the Schmidt number Sc for molecular species. The terminology for 
these wavenumber ranges depends first on whether the wavenumber lies in the inertial 
or viscous range of the energy spectrum and second on whether the wavenumber lies 
in the convective or diffusive range of the scalar spectrum. For v B D there may exist 
an inertial-convective range, a viscous-convective range, and a viscous-diffusive 
range. For v 4 D the important wavenumber ranges are the inertial-convective and 
inertial-diffusive ranges. 

For the scalar field the set of similarity parameters is x ,  e ,  v ,  D,  and the wavenumber 
k (Gibson 196S), where e is the rate of viscous dissipation of turbulent kinetic energy 
per unit mass of fluid. Three useful scaling wavenumbers may be constructed from this 
set of parameters : 

k, 3 ( e / v3 ) t ,  k b  = (e/vD2)*, k, 5 (e /D3)*;  

these are the Kolmogorov, Batchelor, and Corrsin wavenumbers, respectively. It was 
Batchelor (1959) who clarified the fact that kb and k, parameterize the rapid decrease 
in the scalar spectrum due to  diffusion for the cases v D and u < D ,  respectively. It is 
useful to  denote by kL a wavenumber that is characteristic of the wavenumbers at  
which the turbulence contains most of its energy and at  which the scalar field contains 
most of its mean-squared fluctuation. The similarity parameters may be rearranged by 
forming two non-dimensional parameters, v / D  and klk, ,  to give the set x ,  e,  v ,  v / D ,  and 
k/k, .  Dimensional analysis then gives (Boston & Burling 1972; Gibson 1968) 

where H is a non-dimensional function. The use of v rather than D as a scaling para- 
meter, or the use of k, t o  scale the wavenumber rather than &, or k,, is arbitrary owing 
to the existence of the non-dimensional parameter v l D .  

The dimensional analysis for the inertial-convective range does not include the 
parameters v or D as dissipation is not an important process for this range. The results 
of Oboukhov (1949) and Corrsin (1951)  for the inertial-convective scalar spectrum 
show that 

r ( k )  = pxe-#k-# €or kL < k < smaller of k, and k,, ( 4 )  

where /3 is a non-dimensional constant which we call the Oboukhov-Corrsin constant. 
The requirement that k be much smaller than either kd or k, merely limits the inertial- 
convective range to wavenumbers below those at which viscosity or diffusion is 
important. 

A unified treatment of the viscous-convective and viscous-diffusive ranges is given 
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by Batchelor (1959). His theory assumes that, a t  viscous-range length scales, the 
velocity field has spatial variation that is smooth relative to the spatial variation of a 
scalar having D 4 v. Batchelor shows that the local gradients of the scalar become 
aligned with the local axis of the least principal rate of strain and that the local 
gradients increase because of the straining while the amplitude of the fluctuation is 
decreased by diffusion. The typical time for a change in magnitude of the local rate of 
strain or for a rotation of the local principal axes of the rate-of-strain tensor relative to 
the fluid is assumed to be long compared with the lifetime of a given scalar fluctuation. 
Thus the velocity field is considered as a temporally persistent and spatially uniform 
straining describable by a single effective least principal rate of strain y. The deduction 
for the scalar spectrum in the viscous-convective and viscous-diffusive ranges is 

r ( k )  = -xy-lk-lexp (Dk2/y) for k 2 k,. ( 5 )  

Batchelor estimates the parameter y as - 0 . 5 ( ~ / ~ )  !z in which case the argument of the 
exponent in (5) is - 2(k/kb)2. If k < k, then the exponential in ( 5 )  is nearly unity and 
the viscous-convective spectrum becomes 

F(k) = -Xy-lk-l for k, Q k < k,. (6) 

Equation (6)  may be obtained by dimensional analysis with parameters x, y ,  and k. 
Rraichnan (1968) has estimated the effect of allowing y to have large but infrequent 

local deviations from its usual value. The result of such spatial fluctuations in y is that 
the k-1 viscous-convective power law is unchanged but the viscous-diffusive range 
decreases more gently than the Gaussian decrease predicted by Batchelor. Kraichnan 
found that the viscous-diffusive range was dominated by the infrequent occurrences of 
the very large values of y, but the viscous-convective range was dominated by the 
typical occurrence of the moderate values of y. 

For the inertial-diffusive range Batchelor, Howells & Townsend (1  959) hypothesize 
that the dominant contributions to r ( k )  a t  wavenumber k are due to motions of the 
fluid with a scale size of k-1 acting on gradients in the scalar concentration that are 
nearly spatially uniform owing to the action of diffusion. Since most of the diffusive 
dissipation of the scalar spectrum occurs in the lowest wavenumber region of the 
inertial-diffusive range, Batchelor et al. (1959) set these gradients equal to the root- 
mean-square gradient of the scalar fluctuations. Their prediction is given by: 

r ( k )  = $a~e%D-~k-Y for k, < k < k,, (7) 

where a is the Kolmogorov constant. An alternative theory for the inertial-diffusive 
range by Gibson (1968) gives r (k )cc  k-3. 

2. Observations of the scalar spectrum 
The k-8 power law in the inertial-convective range is observed in a number of experi- 

ments: sodium chloride and temperature fluctuations in water by Gibson & Schwarz 
(1963); temperature fluctuations in water by Grant et al. (1968); ammonium acetate 
solute in water by Gibson, Lyon & Hirshsohn (1970a); temperature fluctuations in the 
atmospheric boundary layer by Pond et al. (1966), Gibson, Stegen & Williams (1970b), 
Boston & Burling (1972), Williams & Paulson (1977), and Champagne et al. (1977). 
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The k-l power law in the viscous-convective range is strikingly verified by Grant 
et al. (1968) from temperature fluctuations in the ocean and by Gibson et al. ( 1 9 7 0 ~ )  
from ammonium acetate fluctuations (Sc >> 1 ) .  The k-l behaviour is also observed in 
the temperature (Pr 2: 7) and sodium chloride (Sc 21 700) fluctuations in water as 
measured by Gibson & Schwarz (1963)) and in the measurements of dye fluctuations in 
water (Sc E 2 x lo4) by Nye & Brodkey (1967) and by McKelvey et al. (1975). No 
inertial-convective range was expected or observed in these latter two experiments. 

There are very few measurements of scalar spectra for which the Prandtl or Schmidt 
number is small compared with unity. Measurement of the temperature spectrum in 
mercury (Pr -" 0.02) was undertaken by Clay (1973) and by Rust & Sesonske (1966). 
Experiments have been performed on turbulent flow in weakly ionized argon gas 
(Sc N 0.07) passing through a discharge tube (Granatstein, Levine & Subramanian 
1971; Garosi, Bekefi & Schulz 1970; Kuyel & Gruber 1973). Unfortunately these flows 
are at  low Reynolds numbers; there are strong fluctuations in the neutral-gas tempera- 
ture, and the velocity and ionization distributions are strongly inhomogeneous with 
thrashing of the plasma column observed. Thus, interpretation of the experiments in 
terms of local similarity theory appears impossible. Nevertheless, Bugnolo (1972) uses 
a Heisenberg model to describe the ionization-concentration spectrum. The effects that  
Bugnolo (1972) identifies as inertial-diffusive behaviour are shown by Kuyel & Gruber 
(1973) to be due to strong fluctuations in the density of the neutral gas. 

In conclusion, the k-* inertial-convective law and the k-' viscous-convective law 
appear well supported. Moreover, the scaling expressed by (3) appears adequate in 
those cases in which it has been tested. Unfortunately the diffusive ranges have not 
been adequately resolved except in the case of temperature fluctuations in air 
(Pr 2: 0-72) and in mercury (Pr 2: 0.02). 

The value of the Oboukhov-Corrsin constant /3, which appearsin (4), may be obtained 
from one-dimensional temperature spectra when an inertial-convective range is in 
evidence, and by indirect estimates, which are summarized by Paquin & Pond (1971). 
In  an inertial-convective range the one-dimensional temperature spectrum has the 
same form as the three-dimensional temperature spectrum in (4) with /3 replaced by a 
different constant Bl; isotropy implies /3 = +PI. The indirect estimates of p1 reviewed 
by Paquin & Pond (1971) indicate a value of about 0.38. The values of determined 
from observation of an inertial-convective range are as follows: Gibson & Schwarz 
(1963), 0.35; Grant et al. (1968)) 0.31 & 0.06; Lin & Lin (1973)) 0.6 0.06; Williams & 
Paulson (1977) data, 0.50-tO.02; Champagne et al. (1977), 0.41; Boston & Burling 
(1972), 0.76-C 0.02;7 Gibson et al. (1970b), 1.16 and Clay (1973) obtained 

p1 = 0.55 -C 0.05, 0.56 & 0.02 and 0.52 5 0.13 

from temperature spectra in water, air, and mercury. The data of Gibson et al. (1970b) 
and Boston & Burling (1972) were obtained in the boundary layer over the ocean and 
a tidal flat, respectively. Recently, it  has been shown by Schmitt, Friehe & Gibson 
(1978) that contamination of the fluctuating temperature signal can occur by salt 
spray depositing on resistance wire sensors. The contaminated sensors then respond to 
humidity as well as temperature fluctuations. This contamination is present in the 

t We obtain = 0.76 by rescaling the Boston & Burling (1972) data so that the area under the 
scaled dissipation spectrum is QPr where Pr = 0.72. 
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Gibson et al. (1970b) data (C. A. Friehe, private communication), and may therefore 
explain their large p1 value (Schmitt et al. 1978). 

The pl determinations by Boston & Burling (1972), Williams & Paulson (1977), and 
Champagne et al. (1977) used a scalar dissipation rate determined by integrating the 
dissipation spectrum. The temperature spectral shapes found by Williams & Paulson 
and by Champagne et al. are in good agreement with each other and show a ‘ bump ’ at 
high wavenumbers. This bump also appears in the high-Reynolds-number air-jet data 
obtained byMcConnell(l976). Such a bump is not evident in the Boston & Burling data, 
and the reasons for the discrepancy between their measurements and those of Williams 
& Paulson and of Champagne et al. are not clear. If the data of Gibson et at. (1970b) and 
Boston & Burling (1972) are excluded because of the salt-spray contamination 
problem, then the bump in the temperature spectrum in air appears to be a consistently 
observed feature for high-Reynolds-number turbulence. 

The existence of the bump implies that p1 should be determined from speotral values 
a t  wavenumbers such that k / k ,  5 0.03. A determination of Fl from temperature 
spectra in air obtained a t  moderate Reynolds numbers may have a substantial contri- 
bution from the bump if portions of the spectrum a t  k l k ,  > 0.03 are used; such a 
determination of pl is a misinterpretation of the data. Thus the Pi value of 0.6 _+ @06 
determined from moderate Reynolds number turbulence by Lin & Lin (1973) is in 
better agreement with the values found by Champagne et al. (1977) and Williams & 
Paulson (1977) than is at  first apparent. The existing data now seem sufficiently 
consistent that we should recommend that /I1 be considered to lie between 0-41 and 
0.50, which is based mainly on the determinations by Champagne et al. (1977) and by 
Williams & Paulson (1977). 

3. Previous models of scalar spectral transfer 

following continuity equation: 
The simplest case of an advected scalar is the conserved passive scalar that has the 

~ + V . V N  DVN. 
at 

The equation for the scalar spectrum that follows from this continuity equation is 

ar(k,  ~- t ,  T(k ,  t )  = - 2Dka r ( k ,  t ) ,  
at 

where T ( k ,  t )  is the scalar spectral transfer function. The fact that one equation in two 
unknowns results is the closure problem due to the coupling of the continuity equation 
to the nonlinear Navier-Stokes equations. To avoid the closure problem a model for 
T(k, t )  is used. 

In this section we consider models of the scalar spectral transfer function T ( k ) ,  in 
particular, those developed by Corrsin (1964), Pao (1964, 1965), Leith (1968), and 
Kraichnan (1968). It is useful to introduce the scalar spectral flux function F ( k ) ,  which 
is defined by 
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Thus, in the steady-state case the scalar spectrum satisfies 

In  the steady state F(k)  = x if k lies in a convective range. 
Corrsin (1964, 1961) generalized an energy cascading concept, which was originated 

by Onsager (1949), to the case of turbulently advected scalars. The model consists of 
writing the spectral flux function in the form 

P(k)  = s(k) l?(k). (9 ) 

Corrsin (1964) took s(k) as k/T(k), where T(k) is a time scale obtained by dimensional 
analysis using the parameters k and E(k); he then used Kolmogorov’s inertial range 
form for E(k).  Corrsin (1964) has also shown that if T(k) = - y-1, where y is an effective 
rate of strain, then one obtains (5) and (6) for the viscous-convective and viscous- 
diffusive ranges of Batchelor (1959). 

Pao (1964,1965) proposed that the scalar flux F(k)  is due to a, continuous cascading 
in wavenumber space rather than as a geometrical progression as proposed by Onsager. 
Pao obtained s(k) in the inertial-convective and inertial-diffusive ranges by dimen- 
sional analysis using the parameters E and k, andin the viscous-convective and viscous- 
diffusive ranges using the parameters y and k,  where y is an effective rate of strain. 
Pao (1  964) showed that the dimensional result in the viscous range, namely s ( k )  = - yk, 
is identical with the theory by Batchelor (1959). However, Pao (1965) has assumed that 
the inertial-range form of s(k) is valid even for k > k, when v D; this assumption 
contradicts the results of Batchelor (1959) for the viscous-convective and viscous- 
diffusive ranges, and is also inconsifltent with the experimental evidence of Grant et al. 
(1968). 

Using the Pao (1964) model for the flux function (8) becomes 

where s(k) = ,9-ldk$ for k 4 k,, 

s(k) = Eyk for k +  k,, 

and I is a non-dimensional negative constant. 
The solutions to (10a) are 

r ( k )  = Xpdk-gexp [ - (3,8/2) (k/kc)*], k < k,, (11) 

and r ( k )  cc k-lexp [ - (D/Zy) k2], k % k,, (12) 

where (4) is the boundary condition used to determine the proportionality constant 
in (1  1).  In  the inertial-convective range k < kc and ( 1  1)  gives the k-$ power law. For 
D $ v the exponential in (1  1) causes the scalar spectrum t o  decrease rapidly for k > kc. 
Thus the decrease of the scalar spectrum in the inertial-diffusive range is given as an 
exponential of the four-thirds power of the wavenumber, which is more rapidly 
decreasing than the k* variation predicted by Batchelor et al. (1959) for the inertial- 
diffusive range. For D < v it  follows that kc % k,, and therefore the exponential in 
(11)  is close to unity over the entire inertial-convective range. With I = - 1 (12) is 
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identical with Batchelor's theory as expressed in (5). Unfortunately there is no con- 
nexion between the inertial-range and viscous-range forms for s ( k )  in the Corrsin-Pao 
model. 

A model called the diffusion approximation has been developed by Leith (1968) for 
a scalar field advected by turbulence. This model consists of a spectral flux function of 
the form 

The product D,Q, is obtained by dimensional analysis with the parameters r ( k ) ,  
E(k)  and k .  

k i t h  invokes the equilibrium solution of Lee (1952) in order to obtain D, and Q, 
from their product. The Lee equilibrium solution applies to non-dissipative systems 
that have a truncation in wave vector space so that there is a maximum wavenumber 
allowed. With no dissipation and no spectral transfer beyond the maximum wave- 
number, the spectrum increases as k2 in order that the spectral transfer from lower to 
higher wavenumbers shall be balanced by transfer from high to low wavenumbers . 
The relevance of truncating wave vector space in the absence of dissipation is obscure. 
Thus the relevance of the requirement that r ( k )  should be proportional to k2 in the 
absence of diffusive dissipation in unclear. With the assertion that r(k) cc k2 if D = 0, 
the analysis by Leith yields 

D, cc kF E(k)Ji, 

Q, = k-Zr (k ) .  

In  the inertial range Leith adopts the inertial-range form of the energy spectrum. 
The resulting steady-state solutions for the diffusion approximation are found by 
Leith to  be modified Bessel functions. These solutions behave as k d  in the inertial- 
convective range and decrease more slowly in the inertial-diffusive range than does 
the Corrsin-Pao model. However, for sufficiently large k in the inertial-diffusive range 
the solutions of the diffusion approximation decrease faster than any negative power 
of the wavenumber. In particular the solutions of the diffusion approximation decrease 
faster, a t  sufficiently large k, than the k2s' variation predicted by Batchelor et al. (1959). 

Unfortunately, the diffusion approximation does not represent r ( k )  well in the 
viscous ranges. It may be shown that the diffusion approximation is inconsistent with 
a power law variation of r ( k )  if E ( k )  is decreasing faster than a power of k .  For 
increasing k ,  the decrease in E ( k )  in the viscous range causes a decrease in the diffusion 
approximation for scalar flux F ( k ) ;  consequently r(k), as predicted by the diffusion 
approximation, increases markedly in the viscous-convective range for large Pr or Sc. 
It is concluded that the usefulness of the diffusion approximation is restricted to Pr 
or Sc'less than unity. 

A model of the scalar spectral transfer function for the viscous-convective and 
viscous-diffusive ranges of a scalar satisfying Pr or Sc  9 1 is given by Kraichnan 
(1968). The spectral flux function for Kraichnan's model is given by 

A 8  
F ( k )  = 15 k4% [k-2 r ( k ) ] ,  

where A is independent of wavenumber. 
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For Kraichnan’s model the solution in the steady state is given by Mjolsness (1975) as 

l-w = 5 ( x / N  k-V 1 4-p) exp ( -PI, (15) 

where p = (30D/R)t k. 

If p < 1, then (15) gives I’(k)cc k-1, which is the viscous-convective dependence 
predicted by Batchelor (1959). In the viscous-diffusive range we have p B 1 and (15) 
gives r ( k ) a  exp ( - p ) ;  this exponential decrease of the scalar spectrum in the viscous- 
diffusive range is much more gradual than that in ( 5 ) .  

4. Models of the scalar spectrum for arbitrary v/D 
In this section we describe four models of the scalar spectral transfer function F(k)  . 

We seek simple models that are capable of quantitatively describing the entire high- 
wavenumber portion of the scalar spectrum for arbitrary v/D. Recognizing that such 
models are basically speculative, we desire to keep the models as simple as possible. In  
particular, the scalar spectral transfer function T ( k )  shall not contain the energy 
spectrum E(k)  because the shape of the energy spectrum is not known in detail in the 
viscous range. Furthermore, we require that the models have empirical support; that 
is, their predictions must adequately agree with available experiments. All of the 
models described have the k-4 inertial-convective and k-I viscous-convective 
behaviours; the models differ mainly in their predictions for the diffusive ranges and 
for the transition between the inertial-convective and viscous-convective ranges. 
These models are generalizations of the Corrsin-Pao model and of the models of Leith 
and Kraichnan, which are reviewed in the previous section. 

For large Prandtl or Schmidt number the scalar spectrum makes a transition from 
a -+ power law in the inertial-convective range to a - 1 power law in the viscous- 
convective range; the average of these exponents is -+. We locate the transition 
between these two ranges by the transitional wavenumber k*. Specifically, we define E* 
as the wavenumber between the inertial-convective and viscous-convective ranges at 
which 

Although k* is defined in (16) only for D < v ,  the models that follow give k* significance 
even for D > v. In  the model spectra for D v, k* is a wavenumber at which a transition 
occurs between an inertial-diffusive range a t  wavenumbers lower than k* and a 
viscous-diffusive range a t  higher wavenumbers. The one-dimensional scalar spectrum 
Y(kl) also makes a transition between the inertial-convective and viscous-convective 
range for D < v ;  we define this second transitional wavenumber k: by 

We anticipate that k* and kT are not equal and that k; < k*. If a simple model having 
r ( k )  a k-Q for k < k* and r(k) a k-1 for k > k* is substituted into (2) and (17) then k* 
is found to be roughly twice as large as kT. The ratio k*/kT is found on the basis of a 
model in § 5.3. Moreover, if k*/kd is a constant then k:/kd is expected to be a function 
of v/D. 
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The results of the following analysis are expressed using Kolmogorov scaling for 
F ( k )  and Y ( k ) ,  that is, the following non-dimensional scalar spectra are used: 

4.1. Model 1 

The first model is an extension to the case of scalar advection of the mode1 for energy 
transfer developed by Lin (1972). Two time scales are defined as follows: 

71 = c 4 k - 3 ,  72 = Q ( V / E ) + .  (18) 

The time scale 71 exceeds rz in the inertial range whereas the opposite is true in the 
viscous range. The non-dimensional constant Q is a free parameter to be determined 
by comparison with experiment. 

The Corrsin-Pao model is used by taking the fundion s ( k )  in (9) to be 

P-lk 
s (k)  = -. 

71 4- 72 

This form satisfies the requirement that s(k) r ( k )  -+ x in the inertial-convective range 
when (4) is used for I'(k). A non-dimensional wavenumber y is defined as y = Q8k/kd. 
From ( loa)  the equation for the scalar spectrum is 

where A = PQ-2Pr-1. 

spectrum: 
F(Y) = P Q ~ Y - * ( ~  + Y*) ~ X P  C -A(#Y# + y3)1. 

In the inertial-convective range this solution reduces to (4). In the limit A 4 1 and 
y $ 1 the solution reduces to (5) which is the viscous-convective and viscous-diffusive 
form predicted by Batchelor ( 1959) with the least principal rate-of-strain parameter 
given by y = - (QP)-l (e /v)3.  The inertial-diffusive range is characterized by Ayt $ 1 
and y -g 1 in which case the above solution reduces to (1 l ) ,  which is the prediction of 
the Corrsin-Pao model for the inertial-diffusive range. 

This equation is solved subject to (1)  and yields the following Kolmogorov-scaled 

4.2. Model 2 

This model is an extension of the Corrsin-Pao model in which it is required that s ( k )  
and d In s (k) /d  In k make a smooth transition between their inertial-convective and 
viscous-convective forms. The transition is located at the transitional wavenumber k* , 
as defined in (16). The hyperbolic tangent is used to give the smooth transition in the 
above derivative of s (k)  and a parameter a is introduced which governs the width of 
the transition. It is assumed that 

dlns(k) 
dz* 

-- - + - i t 1  + tanh ( a ~ * ) ] ,  
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where z’ = In (k/k*). Integrating this equation and requiring that s(k) r(k) = x in the 
inertial-convective range yields 

s(k) = p-ldk#[(k/k*)za+ l]-l/(3a). 

This s(k) has the form of ( l o b ,  c )  for k 4 k* and k % k*, respectively. Model 1 is just a 
special case of this model with a = 4. 

The scalar spectrum is the solution of (loa) using the above s(k). The solution is 
given in terms of the Kolmogorov-scaled spectrum 

In [p-l(k*/ka)# P(k)] = - Qz* +-In [2 cosh (az*)] 

as 

1 
3a 

- 2p(k*/ka)%Pr1JE* exp (5w/3) [2 cosh (aw)]l/(3”dw. (19) 

The above scalar spectrum has two free parameters to be determined by comparison 
with experiment: k*/kalocates the transition between inertial-convective and viscous- 
convective ranges, and a determines the width of the transition. This model will be 
successful in predicting scalar spectra for arbitrary v/D only if the same values of 
(k*/ka) and a apply for all v / D .  For z* 5 - 1 the integral above may be approximated 
by Q exp (+z*). The appearance of the Prandtl number in the last term shows that this 
term describes the decrease of the spectrum in the diffusive ranges. For k 4 k*, (19) 
reduces to (ll), the exponential in (11) being significant only for D 4 v. Thus (19) 
yields the inertial-convective and inertial-diffusive predictions of the Corrsin-Pa0 
model. For k 9 k*, (19) becomes proportional to the spectrum in (5); for D 4 v the 
proportionality becomes an equality with 

- W  

y = -p“ (k*/ka)f ( E / v ) ~ .  

Thus the viscous-convective and viscous-diffusive ranges predicted by Batchelor 
(1959) result from this model. 

4.3. Model 3 

The third model is different from the first two in that it is a diffusion model based on 
a spectral flux function having the form of (13) with Q,(k) = k-2F(k). This model 
derives from the inertial-range form of Leith’s diffusion approximation and from the 
viscous-range form of Kraichnan’s flux function. The procedure introduced by Lin 
(1972) is now used to assert that the form of D,(k) at all high wavenumbers is obtained 
by dimensional analysis using the wavenumber and (71 + T ~ )  from (18). The parametric 
wavenumber k’ = k,Q-$ is introduced and the flux function in (13) is required to 
satisfy F ( k )  = x for wavenumbers in the inertial-convective range; the resulting 
D,( k) is 

The wavenumber ks should not be confused with the transitional wavenumber k* which 
is defined by (16). In  terms of the non-dimensional wavenumber y = k/kg the equation 
for the scalar spectrum is 

d @ d  -{- dy l+y$dy - [ Y - ~  I’(y)J) = -?#‘Pr-l(kS/kd)by2 r (y) .  
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This equation has one free parameter, namely kg/kd, which is to be chosen by com- 
parison with experiment. 

For k < kg,  D,(k) cc dkY, which is the inertial-range form of D,(k) given by Leith 
(1968), and this model gives (4) for the inertial-convective range; if, in addition, D v 
then the inertial-diffusive range form for r ( k )  given by Leith (1968) results. For k k', 
D,(k)  cc & - 1 ( ~ / v ) 4  k4, which is similar to Kraichnan's (1968) model, and the solutions of 
this model are proportional to the scalar spectrum in (15) with the non-dimensional 
wavenumber p = (22,813)) (ks/kd)-* ( k / k b ) ;  if, in addition, D < v then the propor- 
tionality becomes an equality with 

A = (e) , 8 - l ( ~ / ~ ) )  (k'/kd)*. (20)  

4.4. Model 4 

The final model is also a diffusion model. In  analogy with the second model, it is 
required that D,(k)  and d In D,(k ) /d  In k make smooth transitions between their 
inertial-range and viscous-range formulae. As in the second model, the hyperbolic 
tangent is used to give the smooth transition to the above derivative of D,(k).  Two 
parameters are introduced: the wavenumber kt and a non-dimensional constant b 
which governs the width of the transition. The wavenumber kt should not be confused 
with the transitional wavenumber k* as defined by (16). It is assumed that 

d In D, - - 1 4  
dz+ - -3- - $[1+ tanh (bxt)] ,  

with zt = In ( k / k t ) .  Subject to the condition F ( k )  = x in the inertial-convective range, 

D,(k) = &P-1dE[(k/kt)2b + l]-1/(3b). 
we have 

In terms of the non-dimensional wavenumber x = k/k+ the equation for the scalar 
spectrum is 

d d - ( &(x2b + l)-li(3*) - [x-2r(x)] = 2$P P+( k+/kd)% x2 r ( x ) .  
dx dx 

This equation contains two free parameters to be determined by comparison with 
experiment, namely (kt lk , )  and b. The asymptotic solutions of this equation are the 
same as those of model 3 with k' replaced by kt.  Model 3 is a special case of model 4 
with b = $. 

I 

5. Comparison of the models with experiment 
All four of the models described in the previous section yield scalar spectra with the 

k-8 inertial-convective range form and the k-1 power law for the viscous-convective 
range. The differences between the models are illustrated in figure 1 for several Prandtl 
numbers; the values of the model parameters used for figure 1 are those obtained in the 
following by comparison with the data of Champagne et al. (1977). 

All four model spectra are the solutions of linear , homogeneous differential 
equations; any such solution multiplied by a constant is also a solution. Therefore, the 
models are not capable of predicting a value of /?, and ,8 is used as an adjustable 
parameter when fitting data. 
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FIGURE 1. The model spectra for four values of v / D .  ---, model 1; 
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FIG- 2. CampariSon of the models with the data obtained by Champagne et al. (1977). 
x , data. The symbols for the models are the same as in figure 1. 

5.1. Temperature jluctuations in the atmospheric surface layer 

We now compare the models with temperature spectra measured in the atmospheric 
surface layer by Champagne et al. (1977) and by Williams & Paulson (1977). No noise 
correction was found necessary by Champagne et al., but a noise correction was used by 
Williams & Paulson. Both data sets were corrected for the aliasing due to the fluctuating 
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FIGURE 3. Comparison of the models with the data obtained by Williams & Paulson (1977). 
A, data. The symbols for the models are the same as in figure 1. 

Model 1 Model 2 Model 3 Model 4 
Data set Q k’lk,, a kbl k d  k t lk , ,  b 

Champagne et al. 2.5 0.074, 1.4 0.174 0.072, 1.9 
Williams & Paulson 2.2 0.073, 1.7 0.22 0.071, 2.0 

TABLE 1. Values of the model parameters. 

convection velocity (Wyngaard & Clifford 1977). The one-dimensional spectra are 
computed for the models and are compared with the data in figures 2-7. The Prandtl 
number is taken to be 0.72, and the P1 values used are 0.41 and 0.46 for the Champagne 
et al. data and Williams & Paulson 9-run-average, respectively. The values of the 
model parameters used for the figures are given in table 1.  

Figures 2 and 3 present the function (k /kd)g?(k) ;  this function is the constant P1 
in the inertial-convective range. Both data sets show a pronounced ‘bump’ at high 
wavenumbers; this bump is reflected in all four of the models. The ‘bump’ is the 
appearance of a tendency toward a viscous-convective range at  wavenumbers lower 
than those at  which diffusive dissipation sharply reduces the spectrum It is evident 
from figures 2 and 3 that models 1 and 3 have a much too gradual transition between 
the inertial-convective and viscous-convective ranges. In fact, the curves for models 1 
and 3 closely approach the constant P1 only for wavenumbers smaller than those 
shown in the figures. Consequently the parameters for these two models are chosen by 
matching the peak values of the model’s dissipation spectra with those of the data. 
Models 2 and 4, on the other hand, reproduce the bump in the data quite well. The 
parameters for models 2 and 4 are then chosen to obtain a bump with about the same 
height and width as t.he data, without regard to the position of the bump maximum. 
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FIGURE 5. Comparison of the model one-dimensional dissipation spectra with the data obtained 
by Williams & Paulson (1977). A, data. The symbols for the models are the same aa in figure 1. 

The crosses ( x ) in figures 2 , 4  and 6 are the result of applying the fluctuating-convec- 
tion-velocity correction to a polynomial fit to the uncorrected data; the calculations 
were done by the experimenters. This polynomial fit is excellent for the dissipation 
spectrum and for the function k 4 Y ( k ) .  However, this polynomial fit slightly under- 
estimates the height of the bump. It is seen in figure 2 that models 2 and 4 have a 
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x , data. The symbols for the models are the same as in figure 1. 
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A, data. The symbols for the models are the same as in figure 1. 

(1977). 

slightly higher bump than the data; this is intentional in order to compensate for the 
bias in the polynomial fit to the data. 

The scaled dissipation spectra are compared with the data in figures 4 and 5. By ( l ) ,  
the area under all of the curves must be the same, namely BPr. A dissipation spectrum 
that falls more rapidly at high wavenumbers must then have a higher peak value at  the 
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FIGURE 8. Comparison of model 2 with the one-dimensional temperature spectrum for run 2 of 

Grant et al. (1968). Also shown is the one-dimensional energy spectrum for their run 2. 

lower wavenumbers. Comparing the position of the peak in the dissipation spectrum 
with the position of the bump maximum in figures 2 and 3 shows that a higher peak in 
the dissipation spectrum tends to move the bump maximum to higher wavenumbers. 
Model 2 has a relatively rapidly falling tail in the dissipation spectrum and conse- 
quently a higher peak in the dissipation spectrum; therefore the bump maximum is at 
a slightly higher wavenumber than the data. The above remarks are the motivation 
for ignoring the position of the bump maximum in fitting models 2 and4 to the 
data. 

Figures 6 and 7 present the fourth wavenumber moment of the scaled one- 
dimensional spectrum. In interpreting these figures, and also figures 4 and 5 ,  it should 
be kept in mind that the accuracy of the data is questionable a t  (klk,) 2 0.8. For 
instance, in figure 6 there is noise evident in the data for k/kd 2 0-8; the signal-to-noise 
ratio was unity at  k l k ,  1: 1.0 (Champagne et al. 1977). If one could remove this noise 
then the data points would be lower at  the higher wavenumbers, in better agreement 
with the model spectra. In  figure 4 the area under the data and model curves must be 
&Pr, with Pr = 0.72. If the tail of the data in figure 4 were reduced by a noise sub- 
traction then the values near the peak would be increased, resulting in even better 
agreement with model 4. 

5.2. Temperature JEuctuations in the ocean 

We compare the spectrum from model 2 with the one-dimensional temperature 
spectrum from the sea water measurements by Grant et al. ( 1  968). The comparison with 
their run 2 is presented in figure 8 along with their one-dimensional energy spectrum 
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for that run. The thermal diffusivity used is the same as used by Grant et al. (1968),  
namely 1-44 x cm2 s-1. As is appropriate to the water temperature of their run 2 
we take Pr = 9.2. The value of k* /k ,  is taken to be 0.044. We use PI = 0.31 as given by 
Grant et al. (1968) for their run 2. The values of PI, k*/k,, and Pr are sufficient to 
determine F ( k ) .  For run 2 Grant et al. (1968) give 

e = 0.52 cm2r3  and x = 4.2 x 'K~s-1; 

this is then sufficient information to determine the unscaled spectrum Y ( k , ) ,  which is 
presented in figure 8. Owing to difficulties in comparing with data in graphical form, 
only model 2 is presented; however, comparison with figure 1 illustrates the differences 
between the models in the viscous-convective and viscous-diffusive ranges. However, 
model 4 and Pr = 9.2 was used to obtain k* /k ,  based on the estimate by Grant et al. 
(1968) that kT/k, = 0.024 f 0.008; this resulted in k*/kd = 0.041 k 0.013, in good 
agreement with k*/kd = 0.044 used in model 2 to produce figure 8. 

In  a stratified medium, such as the ocean, it is possible that 'fossil turbulence' 
contributes to measured temperature spectra. Grant et al. ( 1968) present temperature 
and energy spectra measured in both Discovery Passage and the open ocean. Their 
energy spectra from the open ocean have anomalous shapes with little or no inertial 
range, and it can be speculated that the corresponding temperature spectra may be 
contaminated by fossil turbulence. Their energy spectra from Discovery Passage, run 
2 being an example, have two to three decades of inertial range, which implies active, 
high-Reynolds-number turbulence. Thus it is assumed that the temperature spectra 
from Discovery Passage are not affected by fossil turbulence. 

5.3. Comparison with ammonium acetate fluctuations 

Gibson et al. (1970a)  have measured the spectrum of ammonium acetate fluctuations 
in a sphere wake at downstream positions of 2.17 and 7-5  diameters, which we refer to 
as runs 1 and 2 respectively. The data were low-pass filtered; the resultant filtered one- 
dimensional spectra have a transition from an inertial-convective to a viscous- 
convective range at  the wavenumbers 0.04kd and 0*03k, for runs 1 and 2 respectively. 
We denote the measured transitional wavenumber by (k: )meas  and investigate the 
relationship between (k;")meas and the transitional wavenumbers k: and k* as defined 
in (16 )  and (17 ) .  For this purpose, model 4 is used with b = 1.9 and a Schmidt number 
of 700, although the results are insensitive to variation of the Schmidt number. In 
order to simulate the low-pass filter we truncate the integration in (2) at an upper limit 
of O-Sk, and 2.0kd (corresponding to experimental conditions) for runs 1 and 2 
respectively ; the resulting theoretical, filtered, one-dimensional spectra represent the 
data well and have the transition from inertial-convective to viscous-convective 
range at  0.04kd and 0-03kd if kt/kd is taken to be 0.09 and 0.075 for runs 1 and 2 
respectively. The transitional wavenumber kf of the unfiltered one-dimensional 
spectrum is then 0.034kd and 0-029kd for runs 1 and 2 respectively, whereas k* is 
0*068kd and 0-057kd. 

Several facts are evident from the above results. First, ki, a parameter of model 4 ,  
is not k*; ki/k* N 1.32. Second, the transitional wavenumbers in the filtered spectra, 
(k:)meas = 0.04kd and 0-03kd, are different from the values of k: from the unfiltered 
spectra, k: = 0-034kd and 0*029k,; the percentage discrepancy between the transi- 
tional wavenumber in the data ( 0 0 4 k ,  and 0-03kd) is greater than the percentage 
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Data set V l D  k’lkd P 
Grant et a2. (1968) 9.2 0.041 k 0.013 6.2f 1.4 
Champagne et a2. (1977) and 0.72 0.054 & 0.001 5.1 f 0.06 
Williams & Paulson (1  977) 

Gibson et aE. (1970a) 700 0-062 f 0.006 4.7 f 0-2 

TABLE 2. Values of k* /kd  and q determined by comparing model 4 with experiments. 

discrepancy between the k: values (0-034kd and 0.029kd) that result from the model 
fit to the data. Thus the filtering increases the value of the transitional wavenumber 
by an amount that depends on the value of the cut-off wavenumber relative to k*. 
Third, the transitional wavenumbers k* and k: are unequal; for large v / D  we have 
k*/kf 2: 1.98. Fourth, in order to interpret low-pass filtered data, such as those of 
Gibson et al. (1970a), in terms of the universal constant k*/k, the use of a model of 
the scalar spectrum is needed. 

The values of k*/kd  determined by comparing model 4 with the experiments per- 
formed by Grant et al. (1968), the two runs by Gibson et al. (1970a), and by Champagne 
et al. (1977) and Williams & Paulson (1977) are brought together in table 2. These 
values of k* /k ,  are all consistent within experimental uncertainties. This lends strong 
support to the assertion that the bump observed in the temperature spectrum in air 
( v / D  = 0.72) is the beginning of a viscous-convective range. From top to bottom in 
table 2 the experiments are listed from highest Reynolds number to lowest; while the 
k*/kd values increase from top to bottom. This suggests, but does not prove, that 
k* /kd  might decrease with increasing Reynolds number. 

Model 4 can be used to determine Batchelor’s constant q, which is defined by 
y = -q-l(e/v)*.  For the viscous-convective range, comparison of (6) and (15) gives 
y = -&A. Then (20), with k’ replaced by kt,  gives 

q = J+-/?(kt/ka)” = l.O16p(k*/kd)-+. (21) 

Equation (21) is very nearly the same as is obtained by equating (4) and (6) at k = k*. 
Batchelor’s constant, as determined from the k*/k, values, is also given in table 2; 
pis assumed to be 0.72 for this purpose. The values of q in table 2 tend to increase with 
increasing Reynolds number. 

5.4. Comparison with temperature Jluctuations in mercury 

Clay (1973) has measured temperature fluctuations in mercury (Pr 21 0.018) in order 
to observe an inertial-diffusive range. Two power laws were observed over very 
limited ranges of wavenumber. A k-3 power law was found for 0.025 < k/k, < 0.039. 
At the highest observable wavenumbers the spectrum steepened to a k* power law 
between klk, = 0.12 and 0.23. The observed values of increase with increasing 
Reynolds number from roughly 0.3 to 0-75. The PI values did not level off with 
increasing Reynolds number even though an inertial-convective range was observable 
a t  the highest Reynolds numbers attained. 

Both the three-dimensional and the one-dimensional spectra are computed for 
Pr = 0.018 using model 4 with the parameters obtained from the comparison with the 
data of Champagne et aZ(1977). The dissipation spectra are presented in figure 9 along 
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FIGURE 9. Comparison of' model 4 with the temperature spectrum in mercury measured by Clay 
( 1973). The dashed and dotted curves are the model three-dimensional and one-dimensional 
spectra, respectively. The solid curve is the measured one-dimensional spectrum. 

wit,h the measured temperature spectrum in mercury that appears in figure 19 of Clay 
(1973). The straight lines having slopes 6, - 1, and -I+ correspond to spectral 
power laws k-9, k-3, and k-%', respectively. The model spectrum was determined using 

= 0.43. The scaling in figure 19 of Clay (1973) is apparently in error; the spectral 
values must be multiplied by 0.54 in order that the area under the scaled dissipation 
spectrum equals 4Pr as it should. In  view of this scaling error and the variation of the 
measured values of with Reynolds number, the measured spectrum in figure 9 was 
displaced vertically to obtain a best fit to the model. Because of this displacement, it 
cannot be said that the model compares favourably with the data. However, it  is seen 
that the shape of the model spectrum follows that of Clay's data for wavenumbers 
between k l k ,  = 0.02 and 0.2. Of course, none of the models developed here have a 
power-law inertial-diffusive range. In addition, the model spectrum was used to 
estimate the effect of the fluctuating-convection-velocity aliasing for Clay's experi- 
ment; this effect was found to be negligible. 
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The inertial-convective range power law of the model appears for klk, smaller than 
about 0.003. Such low wavenumbers lie within the variance-containing range of the 
data. Thus the model interprets the data as having no true inertial-convective range 
because the PBcIet number is too small. 

In  previous sections it was found that k*/k ,  N 0.05. Therefore, for Pr < 1 the model 
predicts that there is a transition from an inertial-diffusive range to a viscous-diffusive 
range at  wavenumbers near k* N 0*05k,. This suggests the conjecture that the 
steepening of the measured spectrum from k-3 to k - Y  near k = 0.05kd is due to  a 
transition from an inertial-diffusive range to a viscous-diffusive range. Since the 
transitional wavenumber k* is rather small, e.g. k* /k ,  N 0.05, it is evident that the 
inertial-diffusive range for Pr = 0.018 might be of very limited extent. A convincing 
measurement of an inertial-diffusive range would require v /D 2: and a high 
Reynolds number flow. 

6. Conclusion 
Four models of the scalar spectral transfer function are developed and the resulting 

scalar spectra are compared with experiment. These models are applicable for arbitrary 
v /D for high Reynolds number flow and all have the expected k-8 variation in the 
inertial-convective range and the k-l variation in the viscous-convective range. Models 
1 and 3 give a good fit to the dissipation spectra found by Champagne et al. (1977) and 
Williams & Paulson (1977); however, these models do not represent the data well in 
the inertial-convective range. Models 2 and 4 are in good agreement with the data 
gathered by Champagne et al. and by Williams & Paulson. An outstanding feature of 
the temperature spectra observed by these experimenters is the ‘bump’ at high 
wavenumbers. The models show that this bump is a tendency to a viscous-convective 
range at  wavenumbers lower than the wavenumbers at  which diffusion rapidly 
decreases the temperature spectrum. 

Values of the transitional wavenumber k* are determined from measurements and 
are given in table 2 .  These values appear to increase slightly with decreasing Reynolds 
number; whether or not this effect is real remains a matter for further experimentation 
and theoretical insight. Using the values of k* /kd  from the large v/D experiments of 
Grant et al. (1968) and Gibson et al. (1970a), the models then predict a bump in the 
temperature spectrum in air, Pr = 0.72. Thus a consistent picture emerges for the 
spectrum of scalar fluctuations for arbitrary v/D. 

For constant k* /kd ,  the ratio of k* to the transitional wavenumber observed in a one- 
dimensional scalar spectrum is a function of v /D and also of the location of a low-pass 
filter cut-off, if any. The transitional wavenumber kT is defined in (17)  only for 
asymptotically large v /D;  model 4 gives k*/k:  = 1.98. 

The values found for k*/k, ,  namely about 0.05, have the following implications. 
First, values of PI determined from the level of the temperature spectrum in air 
measured in moderate Reynolds number flows may be too large owing to the presence 
of the bump. A n  accurate determination of PI requires the observation of an inertial- 
convective range in the temperature spectrum in air at  wavenumbers less than about 
0.03k,. Second, the inertial-diffusive range for temperature fluctuations in mercury 
is of very limited extent; a convincing observation of the inertial-diffusive range would 
require v /D 2: and a high Reynolds number flow. 
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Model 4 gives the best fit to the data obtained by Champagne et al. (1977) and by 
Williams & Paulson (1977). This model can then predict the shape of such spectra as 
the humidity spectrum, which has not been measured a t  high wavenumbers because 
of limited frequency response of the sensors. The predicted humidity spectrum and 
temperature-humidity co-spectrum given by Hill (1978) have a bump corresponding 
to that observed in temperature spectra in air. Model 4 is recommended for use in 
computing quantities relevant to optical and radio wave propagation in turbulent 
media. Such an application to optical propagation is made by Hill & Clifford (1978). 
A n  application to VHF radio wave scattering from turbulence-induced fluctuations in 
the D region ionization is made by Hill (1976). 

The author thanks S. A. Bowhill, P. Ii. Rastogi, J. C. W'yngaard, C. A. Friehe, C. H. 
Gibson and J. P. Clay for their helpful discussions, and F. H. Champagne, C. A. Friehe, 
J. C. LaRue, R. M. Williams, C. A. Paulson, and J. P. Clay for allowing the use of their 
data. The author is indebted to R.M. Jones for his help with the computations. 
Figure 8 is taken, in part, from page 435 of the paper by Grant et al. (1968) and is 
reproduced here by permission of the Cambridge University Press. The research 
described was supported by NSF grant ATM-73-06485 and by the National Research 
Council through the Resident Research Accociateship program. 
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